
Calculus 1

Resit Exam

November 26, 2024 (18:30-20:30)

Please read the instructions!

- 1) Apply L'Hospital's Rule to evaluate the limit $\lim_{x\to 0}\frac{a^x-a^{\sin x}}{x^3}$ for all a>0. Indicate the results (e.g. limit laws, continuity, differentiation rules) used in each step.
- 2) Use Taylor Series to find the limit $\lim_{x\to\infty}\left[x-x^2\ln\left(1+\frac{1}{x}\right)\right]$. Justify each step.
- 3) Use integration to calculate the total length of an astroid curve given by the equation $x^{2/3} + y^{2/3} = c^{2/3}$, where c is a positive constant.
- 4) Evaluate the definite integral $\int_1^2 \frac{x+2}{x\sqrt{4-x^2}} \, dx$.
- 5) Solve the initial value problem $y'(x) + xy(x) = x^3$, y(0) = 1.
- 6) Solve the following initial value problem

$$y''(x) + 2y'(x) + 2y(x) = 0$$
, $y(0) = 1$, $y'(0) = -3$.